שיטה חדשה ליצירת מקורות אור קוונטיים תסייע בהצפנה ובפתרון בעיות האבטחה 

פרופ' עדי אריה: "אנחנו עומדים בפתחו של עולם טכנולוגי חדש, ועימו מגיעות שלל הזדמנויות חדשות לצד שלל בעיות שטרם נתקלנו בהן."

אחד האיומים העיקריים בעולמות אבטחת המידע בשנים האחרונות הוא הפיתוח של מחשבים קוונטיים. דור המחשבים החדש שהולך וצובר תאוצה עשוי בעתיד לאפשר פריצה של כמעט כל מקורות ההצפנה הקיימים בעולמנו. במחקר חדש של אוניברסיטת תל אביב פותחה שיטה חדשה ליצירת מקורות אור קוונטיים אשר משמשים כאבן דרך מרכזית בפתרון בעיות האבטחה. מקור האור הקוונטי יכול לפלוט שני חלקיקי אור (פוטונים) השזורים בצורתם המרחבית, לדוגמא פוטון אחד הנראה בקירוב כעיגול במרחב והפוטון השני בעל צורה המכילה (בקירוב) שני עיגולים ולשמש כמקור האור במערכות חדשות של הצפנה קוונטיים. 

 

המחקר נערך בהובלתו של הדוקטורנט אופיר ישרים תחת הנחייתו של פרופ' עדי אריה, ראש הקתדרה על שם מרקו ולוסי שאול, מבית הספר להנדסת חשמל באוניברסיטת תל אביב. כמו כן השתתפו במחקר ד״ר שאולי פרל ויהושע פולי קומר מבית הספר להנדסת חשמל וכן ד״ר אירית יובילר מהמחלקה להנדסת חשמל במכללת סמי שמעון. המאמר, שכותרתו ״יצירת קיודיטים שזורים מרחבית באמצעות הולוגרפיה לא לינארית קוונטית״, פורסם לאחרונה בכתב העת היוקרתי "Science Advances". 

 

צוות המחקר

 

מפתח הצפנה משותף

פרופ' אריה מסביר: "על מנת להעביר מידע חשאי בין שני משתמשים נדרש 'מפתח הצפנה', כלומר סדרה של ביטים שיש רק לשני המשתמשים, המאפשרת להצפין את המידע. בעולם הפיזיקה הקוונטית הוצעה שיטה ליצירת מפתח הצפנה משותף - באמצעות שימוש בשני פוטונים שזורים. כל אחד משני המשתתפים יכול למדוד רק אחד מהפוטונים, אבל בגלל שהם שזורים, קיים קשר בין המדידות הנפרדות האלה, אשר מאפשר את יצירת מפתח ההצפנה המשותף. היתרון הגדול של שיטת הצפנה זו לעומת השיטות הקיימות היא בכך שברגע שיש ניסיון פריצה למידע זה, מתוקף תכונותיו הפיזיקליות (חלקיקים בודדים שנהרסים לאחד שמדדו אותם) השידור ישתבש - ונוכל לדעת על ניסיון הפריצה". 

 

אופיר ישרים מוסיף: "כדי לבצע את כל המתואר לעיל, עלינו לייצר מערכת שבה זוג פוטונים שזורים קוונטית בעלי אותה צורה מרחבית. רוב הניסויים שנעשו עד היום השתמשו בעיקר בתכונת הקיטוב של האור, אך תכונה זו היא בעלת שני ממדים בלבד ומגבילה את כמות המידע שאפשר לצרוך ולהעביר. לכן, המגמה כיום היא לעבור לתכונה אחרת של האור- צורה מרחבית, בעלת מספר רב יותר של ממדים ולכן יש לה יתרונות מבחינת קצב העברת מידע ובנוסף יש לה גם יתרון מבחינת בטיחות המידע."

 

"עד היום, חוקרים ביצעו את העבודה בשני שלבים - יצירת הפוטונים השזורים ולאחר מכן העברה לצורה מרחבית,  על ידי סדרה של רכיבים אופטיים. בעבודתנו הצלחנו לייעל את התהליך ע"י שימוש בגביש שהמקדם הלא ליניארי שלו תוכנן כך שיתפקד כמעין הולוגרמה קוונטית: אלומת לייזר רגילה מאירה את ההולוגרמה הלא לינארית, אשר יוצרת שזירות בין חזיתות הגל (הצורות המרחביות) של שני הפוטונים הנוצרים. זו הכללה לתחום הקוונטי של שיטת ההולוגרפיה הסטנדרטית, אשר מאפשרת לאחסן משרעת ומופע של אלומת אור ולשחזר אותה על ידי הארת ההולוגרמה על ידי לייזר. בדרך זו, יצירת השזירות נעשית על ידי מספר מינימלי של רכיבים – תכונה חשובה בשביל מעבר מהמעבדה ליישומים מעשיים. כדוגמא, ניתן יהיה להתקין מקור קוונטי זה על לוויינים או רחפנים, שבהם נדרש להשתמש במקור אור בעל נפח מינימלי". 

 

פרופ' אריה מסכם: "אנחנו עומדים בפתחו של עולם טכנולוגי חדש, ועימו מגיעות שלל הזדמנויות חדשות לצד שלל בעיות שטרם נתקלנו בהן. אני מאמין שמחקרנו  הינו חלק  מדור חדש של יישומים בתחומי המדע והטכנולוגיה הקוונטיים. בנוסף ליישומים בתחום התקשורת המוצפנת, מקורות האור שפותחו במחקר עשויים להיות שימושים בחיישנים קוונטים בעלי רגישות גבוהה." 

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>